TRPLaTFoRM
Would you like to react to this message? Create an account in a few clicks or log in to continue.

TRPLaTFoRM


 
KapıKayıt OlAnasayfaLatest imagesAramaGiriş yap

 

 Polinomlar Konu Anlatım - Çözümlü Örnekler

Aşağa gitmek 
YazarMesaj
SüPeR_sTaR
Co-Administrator

Co-Administrator
SüPeR_sTaR


Kadın
Mesaj Sayısı : 1532
Yaş : 30
Nerden : Konya
İş/Hobiler : blmyrmm :D
İsim : Sanane :)::)
Durumu : Polinomlar Konu Anlatım - Çözümlü Örnekler Deli10
TRPLaTFoRM : <color=red><b><marquee>TRPLatform // Türkiyenin Paylaşım Platformu...</marquee></b></color>
Kayıt tarihi : 26/01/08

Polinomlar Konu Anlatım - Çözümlü Örnekler Empty
MesajKonu: Polinomlar Konu Anlatım - Çözümlü Örnekler   Polinomlar Konu Anlatım - Çözümlü Örnekler EmptyPaz Mayıs 18, 2008 5:08 pm

P O L İ N O M


Polinomlarla İlgili Temel Kavramlar:

a0,
a1, a2, ....an-1, an  R ve n  N olmak üzere, P(x) = an xn + an-1 xn-1
+ .... + a1 x + a0 şeklindeki ifadelere x değişkenine bağlı, reel
katsayılı n’inci dereceden bir polinom denir.

1. an xn, an-1 xn-1, ...., ak xk, ....., ayx, a0 ifadelerinin her birine P(x) polinomunun terimleri denir.
2. an, an-1, ...., ak, ...., ay, a0 reel sayılarına, polinomun terimlerinin katsayıları denir.
3. P(x) polinomunda anxn terimindeki en büyük n sayısına polinomun derecesi denir ve [P(x)]=n şeklinde gösterilir.
4. Derecesi en büyük olan anxn terimindeki an reel sayısına polinomun katsayısı, a0 sabitine ise polinomun sabit terimi denir.
5. P(x) polinomu, terimlerin azalan derecelerine göre,
P(x) = anxn + an-1xn-1 + .... + a1x + a0 şeklinde veya P(x) polinomu terimlerin artan derecelerine göre,
P(x) = a0 + a1x + a2x2 + .... + an-1xn-1 + anxn biçiminde sıralanır.
6.
Katsayıları reel sayılardan oluşan polinoma “Reel Katsayılı Polinom”
denir ve reel katsayılı polinomlar kümesi R[x] ile gösterilir.

Örnek:
P(x) = 2x5-3/n +xn-2 + 4 ifadesinin bir polinom olması için n  N kaç olmalıdır?

Çözüm:
5-3/n ifadesinin bir doğal sayı olması gerekir bunun için n yerine verilecek sayının 3’ün bölenleri olmalıdır.
3’ün
bölenleri ise n = 1, n = 3, n = -1, n = -3 Ayrıca n-2  0 den n  2
olması gerekir. O halde bu iki şartı da gerçekleyen n = 3 sayısıdır.
Buna göre, P(x) polinomu
P(x) = 2x5-3/3 + x3-2 + 4
P(x) = 2x4 + x + 4 dür.

ÇOK DEĞİŞKENLİ POLİNOM

P(x, y) = x3y2 – 2x4 y3 + xy + x – y + 1 şeklindeki polinomlara x ve y değişkenlerine bağlı reel katsayılı bir polinom denir.

Bu polinomların derecesi x ve y’nin dereceler toplamının en büyüğüdür.
der P(x, y) = der P(x) + der P(y) dir.

Yukarıdaki iki değişkenli polinomun derecesi ikinci terimdeki x ve y’nin dereceler toplamıdır.
Der P(x, y) = 4 + 3 = 7 dir.

Örnek
P(x, y) = 2x2y4 – 3x3y5 + x2y3-y5 + 1 polinomunun derecesi kaçtır?

Çözüm:
2x2y4 teriminin derecesi 2 + 4 = 6
-3x3y5 teriminin derecesi 3 + 5 =8
x2y3 teriminin derecesi 2 + 3 = 5
-y5 teriminin derecesi 5
Yukarıda belirtilen en büyük dereceli terimin derecesi P(x, y) polinomunun derecesidir. O halde, der P(x, y) = 8 dir.

Örnek
P(x) = x3 – 3x2 + 4x – 2 ise
P(2)= ?, P(0) = ?, P(1) = ?

Çözüm:
P(2) = 23 – 3.22 + 4.2 – 2
= 8 – 12 + 8 – 2 = 2 bulunur.
P(0) = 03 – 3.02 + 4.0 – 2 = - 2 bulunur.
P(1) = 13 – 3.12 + 4.1 – 2
= 1 – 3 + 4 – 2 = 0 bulunur.


SIFIR POLİNOMU

P(X) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0 polinomunda,
an = an-1 = ... = a1 = a0 = 0 ise; P(x) = 0xn + 0xn-1 + ... + 0x2 + 0x + 0 polinomuna, sıfır polinomu denir.

Sıfır polinomu, 0 ile gösterilir. Sıfır polinomunun derecesi belirsizdir.

Örnek
P(x) = (m + 3)x2 + (n – 5) x + 1 polinomunun sıfır polinomu olması için; m, n ve t reel sayılarını belirtelim.

Çözüm
P(x) polinomunun sıfır polinomu olması için;
m + 3 = 0, n – 5 = 0, t = 0 ;
m = -3, n = 5, t = 0 olmalıdır.


SABİT POLİNOM

P(x)
= anxn + an-1xn-1 + ... + a1x + a0 polinomunda, an = an-1 = ... = a1 =
0 ve a0  0 ise; P(x) polinomuna, sabit polinom denir.

0xn + 0xn-1 + ... + 0x + a0 sabit polinomu, a0 ile gösterilir.
x0 = 1 olduğundan; a0 sabit polinomu, a0x0 biçiminde yazılabilir. Buna göre, sabit polinomun derecesi 0 dır.

Örnek P(x) = (a – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a ve b sayılarını belirtelim.

Çözüm
P(x) = A – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a – 4 = 0 ve b = 0 olmalıdır. Buna göre, a = 4 ve b = 0 dır.

İKİ POLİNOM EŞİTLİĞİ

Dereceleri aynı ve aynı dereceli terimlerinin kat sayıları eşit olan iki polinoma, eşit polinomlar denir.

n. dereceden,
A(x) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0 ve
B(x) = bnxn + bn-1xn-1 + ... + b2x2 + b1x + b0 polinomları için;
A(x) = B(x)  an = bn, an-1 = bn-1, ... , a2 = b2, a1, a0 = b0 dır.

Örnek
A(x) = 5x3 + (a + 1x2 + d,
B(x) = (b - 1)x3 – 3x2 – (2c – 3) x + polinomları veriliyor. A(x) = B(x) olması için; a, b, c ve d yi bulalım.

Çözüm
A(x) = 5x3 + (a + 1)x2 + d = 5x3 + (a + 1)x2 + 0x + d,
B(x) = (b – 1)x3 - 3x2 – (2c – 3)x + olduğundan;
A(x) = B(x)  5 = b – 1, a + 1 = -3, 0 = -(2c – 3), d =
b = 6, a = -4, c = , d = dir.


POLİNOM FONKSİYONLARI

P : R  R
x  P(x) = anxn + an-1xn-1 + ... + a1x + a0 fonksiyonuna polinom fonksiyonu denir.

P : R  R
x  P(x) = 5x3 + 2x2 – 3x + 1 ifadesi polinom fonksiyonudur.

Örnek
P(x) = x2 + 2x + 1 polinomu için P(X-1) polinomunu bulunuz.

Çözüm
P(x-1)’i bulmak için P(x)’de x yerine x-1’i yazalım.
P(x-1) = (x-1)2 + 2(x-1) + 1
= x2 – 2x + 1 + 2x – 2 + 1 = x2
P(x-1) = x2 olarak bulunur.

II: Yol:
Önce P(x) = x2 + 2x + 1 = (x+1)2 olarak yazıp x yerine x-1’i yazalım.
P(x-1) = (x-1+1)2 = x2 bulunur.

Örnek
P(x) polinomu için,
P(x+2) = x3 – 2x2 + 4 eşitliği veriliyor. Buna göre P(x) polinomunu bulunuz.

Çözüm
P(x+2) = x3 - 2x2 + 4 eşitliğinde
H = x + 2  h –2 = x’i yerine yazalım.
P(h – 2 + 2) = (h – 2)3 – 2(h – 2)2 + 4
P(h) = (h – 2)3 – 2(h – 2)2 + 4
P(x) = (x – 2)3 – 2(x – 2)2 + 4 bulunur.


POLİNOM KATSAYILAR TOPLAMI

P(x) = anxn + an-1xn-1 + ... + a1x + a0 polinomunda x = 1 yerine yazılırsa
P(1) = an + an-1 + ... + a1 + a0 katsayılar toplamı bulunur.
P(x) polinomunda x = 0 yerine yazılırsa sabit terimi bulunur.

Örnek
P(x) = 2x4 + 5x3 – 3x2 + x – 1 polinomunun katsayıları toplamını bulunuz.

Çözüm
P(x) de x = 1 ‘i yerine yazalım.
P(1) = 2.14 + 5.13 – 3.12 + 1-1
= 2 + 5 – 3 + 1 – 1 = 4 bulunur.

POLINOMLARDA İŞLEMLER

Polinomlarda Toplama İşlemi

A(x) = a4x4 + a3x3 + a2x2 + a1x + a0
B(x) = b3x3 + b2x2 + b1x + b0
Polinomları
verilsin, bu iki polinomu toplarken aynı dereceli terimler kendi
arasında toplanarak iki polinomun toplamı elde edilir.
A(x) + B(x) = a4 x4 + ( a3 + b3 ) x3 + ( a2 + b2 ) x2 + ( a1 + b1 ) x + a0 + b0

Örnek
P(x) = x3 + 2x2 – 3x + 1, Q(x) = 3x2 + 3 x + 4 polinomlarının toplamı olan polinomu bulunuz.

Çözüm
P(x) + Q(x) = x3 + (2+3) x2 + (-3) + 3) x + 1 + 4
= x3 + 5x2 + (3-3) x + 5 dir.

Buna göre iki polinomun toplamı yine bir başka polinom olduğundan polinomlar toplama işlemine göre kapalıdır.

1. Polinomlar kümesi, toplama işlemine göre kapalıdır.
2. Polinomlar kümesinde toplama işleminin değişme özelliği vardır.
3. Polinomlar kümesinde toplama işleminin birleşme özelliği vardır.
4. Sıfır polinomu, polinomlar kümesinde toplama işlemine göre birim elemanıdır.
5. Her polinomun, toplama işlemine göre tersi vardır.


İki Polinomun Farkı

P(x) ve Q(x) polinomları için, P(x) – Q(x) = P(x) + (-Q(x)) tir.
P(x) – Q(x) polinomuna, P(x) polinomu ile Q(x) polinomunun farkı denir.

Örnek
A(x) = 5x4 + x3 – 3x2 + x + 2 ve

B(x) = - 5x4 + x3 + 2x2 + polinomları için, A(x) – B(x) farkını bulalım.

Çözüm
B(x) = -5x4 + x3 + 2x2 + ise, -B(x) = 5x4 - x3 – 2x2 - dir.
A(x) – B(x) = A(x) + (-B(x))
= (5x4 + x3 – 3x2 + x + 2) + (5x4 - x3 –2x2 - )
= (5 + 5)x4 + ( - )x3 + (-3 –2)x2 + x + (2 - )
= 10x4 – x3 – 5x2 + x - olur.
Bu örnekte görüldüğü gibi, iki polinomun farkı da bir polinomdur.
Her
A(x) ve B(x) polinomları için, A(x) – B(x) ifadesi de polinom
olduğundan; polinomlar kümesi, çıkarma işlemine göre kapalıdır.

Polinomlarda Çarpma İşlemi

A(x) ve b(x) gibi iki polinomun çarpımı, A(x) ‘in her terimi B(x)’in her terimi ile ayrı ayrı çarpılarak bulunur.
anxn ile bkxk teriminin çarpımı
anxn . bkxk = (an . bk) xn+k dir.
Yani (5x3) . (-2x4) = 5 . (-2) x3+4 = -10x7
Bu çarpmaya göre aşağıdaki eşitliği yazabiliriz.
Der [A(x) . B(x) ] = der (A(x)) + der (B(x))

Örnek
A(x) = 3x4 + 1, B(x) = x2 + x
C(x) = x2 – x + 1 polinomları veriliyor.
a) A(x) . B(x)
b) B(x) . C(x) çarpımlarını bulunuz.

Çözüm
a) A(x) . B(x) = (3x4 + 1) . (x2 + x)
= 3x4 . x2 + 3x4 . x + x2 + x
= 3x6 + 3x5 + x2 + x

b) B(x) . C(x) = (x2 + x) . (x2 – x + 1)
= x2 . x2 – x2 . x + x2 . 1 + x . x2 – x . x + x . 1
= x4 – x3 + x2 + x3 – x2 + x + 1
= x4 + x + 1 bulunur.

Polinomlarda çarpma işleminin aşağıdaki özellikleri vardır.

1. Kapalılık (iki polinomun çarpımı yine bir polinomdur.
2. Değişme özelliği vardır.
3. Birleşme özelliği vardır.
4. Çarpma işleminin birim (etkisiz) elemanı P(x) = 1 sabit polinomudur.
5. Polinomlar kümesinde çarpma işlemine göre bazı polinomların tersi yoktur.
Yani P(x) = x2 polinomunun tersi 1/x2 ifadesi polinom değildir.
6. Polinomlar kümesinde çarpma işleminin toplama işlemi üzerine dağılma özelliği vardır.
A(x) . (B(x) + C(x)) = A(x) . B(x) + A(x) . C(x)
Sayfa başına dön Aşağa gitmek
 
Polinomlar Konu Anlatım - Çözümlü Örnekler
Sayfa başına dön 
1 sayfadaki 1 sayfası
 Similar topics
-
» Fizik Konu Anlatimi

Bu forumun müsaadesi var:Bu forumdaki mesajlara cevap veremezsiniz
TRPLaTFoRM :: Eğitim , Öğretim :: Dersler :: Matematik-
Buraya geçin: